Selective turnover of sarcolemmal phospholipids with lethal cardiac myocyte injury

Author:

Miyazaki Y.1,Gross R. W.1,Sobel B. E.1,Saffitz J. E.1

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St.Louis, Missouri 63110.

Abstract

To delineate the biochemical mechanisms responsible for the transition from reversible to irreversible ischemic injury, we used quantitative electron microscopic autoradiography. Specific alterations of phospholipid catabolism in individual subcellular organelles of cardiac myocytes associated with simulated ischemic injury were identified. Neonatal rat cardiac myocytes were incubated with 5 nM [3H]arachidonic acid to label loci of phospholipid turnover and were exposed to 30 microM iodoacetate to produce reversible and irreversible injury. Although only minute amounts of arachidonic acid were incorporated into sarcolemmal phospholipids under control conditions, 20- and 96-fold increases were observed under conditions leading to reversible and irreversible cell injury, respectively. Increases of 5- and 28-fold in the specific radioactivity of sarcolemmal phospholipids in reversibly and irreversibly injured cells occurred in the absence of significant alterations in the specific radioactivity of other subcellular compartments, demonstrating that accelerated phospholipid catabolism was confined essentially to the sarcolemma. Selective catabolism of sarcolemmal phospholipids, known to be highly enriched in arachidonic acid, is likely to augment local accumulation of arachidonic acid, identified recently as a second messenger regulating myocardial K+ channels. Because the biochemical integrity of the sarcolemma is critical to both electrophysiological function and viability of myocytes, the observed selective alterations of sarcolemmal phospholipid metabolism appear to be pivotal determinants of lethal myocardial injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3