Affiliation:
1. Department of Medicine, Milton S. Hershey Medical Center, PennsylvaniaState University, Hershey 17033.
Abstract
The effect of muscle contraction on phosphorylatable myosin light chain (P-light chain) phosphate content and isometric twitch tension was examined at 25, 30, and 35 degrees C in intact mouse extensor digitorum longus muscle. Peak tetanic tension was unaffected by temperature, whereas peak unpotentiated isometric twitch tension was inversely proportional to muscle incubation temperature. The extent of phosphate incorporation into P-light chain elicited by a 20-s train of twitches (5/s) was inversely proportional to muscle incubation temperature, whereas the fractional increase in twitch tension (twitch potentiation) elicited by repetitive stimulation was directly proportional to muscle incubation temperature. After the twitch train, the rate of decline of potentiated twitch tension and of P-light chain dephosphorylation was directly proportional to muscle incubation temperature. The net result was that a significant and unique relationship between P-light chain phosphate content and contraction-induced tension potentiation existed at each temperature examined. The slope of the P-light chain phosphate vs. isometric twitch potentiation relationship varied directly as a function of muscle incubation temperature. The observations that the slope of this relationship increases and that unpotentiated twitch tension decreases when muscle incubation temperature is increased support the hypothesis that contraction-induced tension potentiation in intact mammalian skeletal muscle is the result of a sensitization of the contractile element to activation by Ca2+ that is brought about by P-light chain phosphorylation.
Publisher
American Physiological Society
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献