Platelet-activating factor and related acetylated lipids as potent biologically active cellular mediators

Author:

Snyder F.1

Affiliation:

1. Medical Sciences Division, Oak Ridge Associated Universities,Tennessee 37831-0117.

Abstract

Platelet-activating factor (PAF or 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is the most potent lipid mediator yet discovered. It is known to stimulate a wide span of biological responses ranging from aggregation and degranulation of platelets and neutrophils to a variety of cellular effects involving the stimulation of chemotaxis; chemokinesis; superoxide formation; protein phosphorylation; activation of protein kinase C, arachidonic acid, and phosphoinositide metabolites; glycogenolysis; and tumor necrosis factor production. Obviously, with such a diversity of biological activities, it is not surprising that PAF has been considered to be a key component in numerous diseases related to hypersensitivity and inflammatory responses. Evidence has also been presented for the role of PAF in physiological processes, particularly those involving reproduction and fetal development. Furthermore, because of its potent hypotensive action, PAF has been implicated as a contributing factor in blood pressure regulation. PAF is produced by two independent enzymatic pathways. The remodeling route involves the structural modification of a membrane lipid (1-alkyl-2-acyl-sn-glycero-3-phosphocholine) by replacement of the acyl moiety with an acetate group. An alternate route is the de novo synthesis of PAF from an O-alkyl analogue of a lysophosphatidic acid that requires a reaction sequence of acetylation, dephosphorylation, and phosphocholine addition steps. Hypersensitivity and other pathophysiological reactions are thought to be caused by activation of the remodeling pathway, whereas the de novo route is believed to be the source of endogenous levels of PAF required for physiological functions. Inactivation of PAF occurs when the acetate group is hydrolyzed by an acetylhydrolase that is present in both extra- and intracellular compartments, although the catalytic activity of the two forms of acetylhydrolase are identical, some of their properties differ. The control of PAF metabolism is very complex, but acetylhydrolase, Ca2+, phosphorylation/dephosphorylation of enzymes, and fatty acids (especially polyunsaturates) appear to be important regulatory factors. Specific PAF receptors have clearly been demonstrated on several different types of cells, and although the mechanism of PAF actions is poorly understood, it appears that the PAF/receptor-induced responses are closely associated with the signal transduction process; both G proteins and adenyl cyclase appear to be involved. Because significant quantities of PAF are often retained within certain cells, the possibility of PAF serving as an intracellular mediator has also been proposed.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3