Affiliation:
1. University of Tennessee-Oak Ridge Graduate School of Biomedical Sciences.
Abstract
Putrescine is taken up by confluent pig kidney (LLC-PK1) cells at roughly equal rates over both Na(+)-dependent and Na(+)-independent pathways. The former is sensitive to 1 mM amiloride, but the latter is not. Uptake rates are similar at both the apical and basolateral surfaces. The principal fate of the putrescine is oxidative deamination, yielding a product that appears to be either gamma-aminobutyraldehyde or delta 1-pyrroline. Most of the remainder is converted to products tentatively identified as spermidine, spermine, or another unidentified product; these products as well as putrescine itself are lost from the cell at either surface. Changing the extracellular pH in the range of 6.8-8.0 has no affect on putrescine uptake. Cells acidified to intracellular pH 6.8 show a reduced capacity to incorporate radioactivity, an effect that may be due to inhibition of diamine oxidase. Depletion of ATP stores by treating cells with 2-deoxy-D-glucose and NaN3 does not reduce putrescine uptake, suggesting that the mechanism is not a primary active transporter. The Na(+)-dependent component of uptake is inhibited by 5-50 microM Hg2+ in a dose-dependent manner. p-Chloromercuribenzene sulfonic acid (p-CMBS) at high concentrations (500-1,000 microM) does not affect Na(+)-independent uptake but in the presence of Na+ depresses total uptake more than Na+ depletion alone, suggesting that Na+ enhances the binding of p-CMBS to both transporters. Spermidine and spermine compete with putrescine for uptake, but a variety of other organic bases and amino acids do not, indicating that polyamines are transported by mechanisms distinct from the transporters for those other compounds.
Publisher
American Physiological Society
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献