Phorbol ester-stimulated human neutrophil membrane depolarization is dependent on Ca2(+)-regulated Cl- efflux

Author:

Myers J. B.1,Cantiello H. F.1,Schwartz J. H.1,Tauber A. I.1

Affiliation:

1. William B. Castle Hematology Research Laboratory, Boston CityHospital, Massachusetts.

Abstract

The ionic basis of phorbol 12-myristate 13-acetate (PMA)-stimulated membrane depolarization in the human neutrophil has not previously been established. Alterations in cation permeability are probably not directly responsible for the depolarization response, since the rate or Rb+ influx or efflux is unchanged upon PMA stimulation, and although Na+ fluxes are increased, depolarization is not changed by either the addition of ouabain or reduction of extracellular Na+ from 140 to 0 meq. Furthermore, the enhanced Na+ influx in stimulated cells is blocked by amiloride at 10(-3) M, but not by 10(-5) M, suggesting Na+ influx proceeds through the electroneutral Na(+)-H+ antiporter and is therefore not responsible for depolarization. Upon stimulation, Cl- content of PMA-stimulated neutrophils decreases without change in Na+ or K+ content, as determined by electron probe analysis. In addition, acute reduction in extracellular Cl- enhances the rate and extent of depolarization induced by PMA. This change in intracellular Cl- and effect of reduction in extracellular Cl- concentration on depolarization can best be accounted for by an enhanced efflux via an electrogenic mechanism. Thus enhanced conductive Cl- efflux can account for the observed depolarization. That Ca2+ regulates depolarization is evidenced by the dependence of depolarization on external Ca2+ (Cao2+). Depolarization is absent in Ca2(+)-depleted cells [internal Ca2+ (Cai2+) less than 15 nM] and is restored with titration of extracellular Ca2+, exhibiting a 50% effective dose (ED50) of 100 mM. Thus PMA-initiated depolarization is regulated by Ca2+, either from intra- or extracellular sources, but the Ca2(+)-dependent activity responsible for control of Cl- efflux is as yet uncharacterized.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3