Loss of dystrophin expression in skeletal muscle is associated with senescence of macrophages and endothelial cells.

Author:

Young Laura V.1,Morrison William1,Campbell Craig1,Moore Emma C.1,Arsenault Michel G.1,Dial Athan G.2,Ng Sean2,Bellissimo Catherine A.3,Perry Christopher G.R.3,Ljubicic Vladimir2,Johnston Adam P.14

Affiliation:

1. Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada

2. Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada

3. School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, ON, Canada

4. Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada

Abstract

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21 and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence associated secretory phenotype which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne Muscular Dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-week-old) and D2-mdx mice (4-week and 8-week-old), two mouse models of DMD, that cells displaying canonical markers of senescence are found within skeletal muscle. 8-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation which were mostly Cdkn1a-positive macrophages while in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wildtype (WT) muscle which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes (Cdkn1a (p21), Cdkn2a (p16INK4A), Trp53 (p53)) which correlated with the quantity of SA-b-Gal-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3