Nociceptive Quality of the Laser-Evoked Blink Reflex in Humans

Author:

Romaniello A.12,Valls-Solé J.3,Iannetti G. D.1,Truini A.1,Manfredi M.14,Cruccu G.14

Affiliation:

1. Department of Neurological Sciences, University of Rome “La Sapienza,” I-00185 Rome, Italy;

2. Center for Sensory-Motor Interaction, Orofacial Pain Laboratory, Aalborg University, DK-9220 Aalborg, Denmark;

3. Servei de Neurologia, Department of Medicine, University of Barcelona, 08036 Barcelona, Spain; and

4. Neuromed Institute, 86077 Pozzilli, Italy

Abstract

Laser radiant-heat pulses selectively excite the free nerve endings in the superficial layers of the skin and activate mechano-thermal nociceptive afferents; when directed to the perioral or supraorbital skin, high-intensity laser pulses evoke a blink-like response in the orbicularis oculi muscle (the laser blink reflex, LBR). We investigated the functional properties (startle or nociceptive origin) of the LBR and sought to characterize its central pathways. Using high-intensity CO2-laser stimulation of the perioral or supraorbital regions and electromyographic (EMG) recordings from the orbicularis oculi muscles, we did five experiments in 20 healthy volunteers. First, to investigate whether the LBR is a startle response, we studied its habituation to expected rhythmic stimuli and to unexpected arrhythmic stimuli. To assess its possible nociceptive quality, we studied changes in the LBR and the R2 component of the electrical blink reflex after a lidocaine-induced supraorbital nerve block and after intramuscular injection of the opiate fentanyl and the opiate-antagonist naloxone. To characterize the central pathways for the LBR, we investigated the interaction between the LBR and the three components of the blink reflex (R1, R2, and R3) by delivering laser pulses to the perioral or supraorbital regions before or after electrical stimulation of the supraorbital nerve at various interstimulus intervals. Finally, to gain further information on the central LBR pathways, using two identical CO2-laser stimulators, we studied the LBR recovery curves with paired laser pulses delivered to adjacent forehead points at interstimulus intervals from 250 ms to 1.5 s. The LBR withstood relatively high-frequency rhythmic stimulations, and unexpected laser pulses failed to evoke larger responses. When lidocaine began to induce hypoalgesia (about 5 min after the injection), the LBR was abolished, whereas R2 was only partly suppressed 10 min after the injection. Fentanyl injection induced strong, naloxone-reversible, LBR suppression (the response decreased to 25.3% of predrug values at 10 min and to 4% at 20 min), whereas R2 remained appreciably unchanged. Whether directed to the perioral or supraorbital regions, preceding laser pulses strongly suppressed R2 and R3 though not R1. Conversely, preceding electrical stimuli to the supraorbital nerve suppressed the LBR. In response to paired stimuli, the LBR recovered significantly faster than R2. These findings indicate that the LBR is a nociceptive reflex, which shares part of the interneuron chain mediating the nonnociceptive R2 blink reflex, probably in the medullary reticular formation. The LBR may prove useful for studying the pathophysiology of orofacial pain syndromes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3