The Lateralizer: a tool for students to explore the divided brain

Author:

Motz Benjamin A.1,James Karin H.1,Busey Thomas A.1

Affiliation:

1. Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana

Abstract

Despite a profusion of popular misinformation about the left brain and right brain, there are functional differences between the left and right cerebral hemispheres in humans. Evidence from split-brain patients, individuals with unilateral brain damage, and neuroimaging studies suggest that each hemisphere may be specialized for certain cognitive processes. One way to easily explore these hemispheric asymmetries is with the divided visual field technique, where visual stimuli are presented on either the left or right side of the visual field and task performance is compared between these two conditions; any behavioral differences between the left and right visual fields may be interpreted as evidence for functional asymmetries between the left and right cerebral hemispheres. We developed a simple software package that implements the divided visual field technique, called the Lateralizer, and introduced this experimental approach as a problem-based learning module in a lower-division research methods course. Second-year undergraduate students used the Lateralizer to experimentally challenge and explore theories of the differences between the left and right cerebral hemispheres. Measured learning outcomes after active exploration with the Lateralizer, including new knowledge of brain anatomy and connectivity, were on par with those observed in an upper-division lecture course. Moreover, the project added to the students' research skill sets and seemed to foster an appreciation of the link between brain anatomy and function.

Publisher

American Physiological Society

Subject

General Medicine,Physiology,Education

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3