A new assessment to monitor student performance in introductory neurophysiology: Electrochemical Gradients Assessment Device

Author:

Cerchiara Jack A.1ORCID,Kim Kerry J.2,Meir Eli2,Wenderoth Mary Pat1,Doherty Jennifer H.1ORCID

Affiliation:

1. Department of Biology, University of Washington, Seattle, Washington

2. SimBiotic Software, Missoula, Montana

Abstract

The basis for understanding neurophysiology is understanding ion movement across cell membranes. Students in introductory courses recognize ion concentration gradients as a driving force for ion movement but struggle to simultaneously account for electrical charge gradients. We developed a 17-multiple-choice item assessment of students’ understanding of electrochemical gradients and resistance in neurophysiology, the Electrochemical Gradients Assessment Device (EGAD). We investigated the internal evidence validity of the assessment by analyzing item characteristic curves of score probability and student ability for each question, and a Wright map of student scores and ability. We used linear mixed-effect regression to test student performance and ability. Our assessment discriminated students with average ability (weighted likelihood estimate: −2 to 1.5 Θ); however, it was not as effective at discriminating students at the highest ability (weighted likelihood estimate: >2 Θ). We determined the assessment could capture changes in both assessment scores (model r2 = 0.51, P < 0.001, n = 444) and ability estimates (model r2 = 0.47, P < 0.001, n = 444) after a simulation-based laboratory and course instruction for 222 students. Differential item function analysis determined that each item on the assessment performed equitably for all students, regardless of gender, race/ethnicity, or economic status. Overall, we found that men scored higher ( r2 = 0.51, P = 0.014, n = 444) and had higher ability scores ( P = 0.003) on the EGAD assessment. Caucasian students of both genders were positively correlated with score ( r2 = 0.51, P < 0.001, n = 444) and ability ( r2 = 0.47, P < 0.001, n = 444). Based on the evidence gathered through our analyses, the scores obtained from the EGAD can distinguish between levels of content knowledge on neurophysiology principles for students in introductory physiology courses.

Funder

Startup Funds - JD

NSF

Publisher

American Physiological Society

Subject

General Medicine,Physiology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3