Author:
Aksenov D. P.,Serdyukova N. A.,Bloedel J. R.,Bracha V.
Abstract
The cerebellar interposed nuclei (IN) are critical components of a neural network that controls the expression of classically conditioned eyeblinks. The IN receive 2 major inputs: the massive, γ-aminobutyric acid (GABA)–mediated input from the Purkinje cells of the cerebellar cortex and the relatively weaker, glutamate-mediated input from collaterals of mossy and climbing fiber cerebellar afferent systems. To elucidate the role of IN glutamate neurotransmission in conditioned response (CR) expression, effects of blocking fast glutamatergic neurotransmission in the IN with γ-d-glutamylglycine (DGG) on the expression of conditioned eyeblinks and on cerebellar nuclear neuronal activity were examined. Surprisingly, blocking fast glutamate receptors in the IN did not abolish CRs. DGG decreased CR incidence and slightly increased CR latency. In contrast, identical amounts of DGG applied to the cerebellar cortex abolished CRs. Similar to the behavioral effects, DGG had unexpectedly mild effects on IN neurons. At the population level, the baseline firing frequency of IN cells was not affected. After DGG injections, the incidence of excitatory modulation of cell activity in the interstimulus interval decreased but was not abolished. A combined block of fast glutamate and GABAA neurotransmission using a mixture of DGG and picrotoxin dramatically reduced CR incidence, increased the firing frequency of all cell types, and virtually abolished all modulation of neuronal activity. These results indicate that fast glutamate neurotransmission in the IN plays only an accessory role both in the expression of behavioral CRs and in the generation of associated neuronal activity in the IN.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献