Astrocytic iNOS-Dependent Enhancement of Synaptic Release in Mouse Neocortex

Author:

Buskila Yossi1,Amitai Yael1

Affiliation:

1. Departments of Physiology and Neurobiology, the Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel

Abstract

Nitric oxide (NO) has been recognized as an atypical neuronal messenger affecting synaptic transmission, but its cellular source has remained unresolved as the neuronal NO synthase isoform (nNOS) in brain areas such as the neocortex is expressed only by a small subset of inhibitory neurons. The involvement of the glial NOS isoform (iNOS) in modulating neuronal activity has been largely ignored because it has been accepted that this enzyme is regulated by gene induction following detrimental stimuli. Using acute brain slices from mouse neocortex and electrophysiology, we found that selective inhibition of iNOS reduced both spontaneous and evoked synaptic release. Moreover, iNOS inhibition partially prevented and reversed the potentiation of excitatory synapses in layer 2/3 pyramidal neurons. NOS enzymatic assay confirmed a small but reliable Ca2+-independent activity fraction, consistent with the existence of functioning iNOS in the tissue. Together these data point to astrocytes as a source for the nitrosative regulation of synaptic release in the neocortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3