Tissue Resistance Changes and the Profile of Synchronized Neuronal Activity During Ictal Events in the Low-Calcium Model of Epilepsy

Author:

Fox John E.,Bikson Marom,Jefferys John G. R.

Abstract

Population spikes vary in size during prolonged epileptic (“ictal”) discharges, indicating variations in neuronal synchronization. Here we investigate the role of changes in tissue electrical resistivity in this process. We used the rat hippocampal slice, low-Ca2+ model of epilepsy and measured changes in pyramidal layer extracellular resistance during the course of electrographic seizures. During each burst, population spike frequency decreased, whereas amplitude and spatial synchronization increased; after the main discharge, there could be brief secondary discharges that, in contrast with those in the primary discharge, started with high-amplitude population spikes. Mean resistivity increased from 1,231 Ω.cm immediately before the burst to a maximum of 1,507 Ω.cm during the burst. There was no significant increase during the first 0.5–1 s of the field burst, but resistance then increased (τ ∼ 5 s), reaching its peak at the end of the burst, and then decayed slowly (τ ∼ 10 s). In further experiments, we modulated the efficacy of electrical field effects by changing perfusate osmolarity. Reducing osmolarity by 40–70 mOsm increased preburst resistivity by 19%; it reduced minimum population spike frequency (×0.6–0.7) and increased both maximum population spike amplitude (×1.5–2.3) and spatial synchronization (×1.4–2.5, cross-correlation over 0.5 mm) during bursts. Increasing osmolarity by 20–40 mOsm had the opposite effects. These results suggest that, during each field burst, field effects between neurons gradually become more effective as cells swell, thereby modulating burst dynamics and facilitating the rapid synchronization of secondary discharges.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3