Mechanisms and Distribution of Ion Channels in Retinal Ganglion Cells: Using Temperature as an Independent Variable

Author:

Fohlmeister Jürgen F.1,Cohen Ethan D.2,Newman Eric A.3

Affiliation:

1. Department of Integrative Biology and Physiology and

2. Office of Science and Engineering Laboratories, Center for Devices and Radiologic Health, U.S. Food and Drug Administration, Silver Spring, Maryland

3. Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; and

Abstract

Trains of action potentials of rat and cat retinal ganglion cells (RGCs) were recorded intracellularly across a temperature range of 7–37°C. Phase plots of the experimental impulse trains were precision fit using multicompartment simulations of anatomically reconstructed rat and cat RGCs. Action potential excitation was simulated with a “Five-channel model” [Na, K(delayed rectifier), Ca, K(A), and K(Ca-activated) channels] and the nonspace-clamped condition of the whole cell recording was exploited to determine the channels' distribution on the dendrites, soma, and proximal axon. At each temperature, optimal phase-plot fits for RGCs occurred with the same unique channel distribution. The “waveform” of the electrotonic current was found to be temperature dependent, which reflected the shape changes in the experimental action potentials and confirmed the channel distributions. The distributions are cell-type specific and adequate for soma and dendritic excitation with a safety margin. The highest Na-channel density was found on an axonal segment some 50–130 μm distal to the soma, as determined from the temperature-dependent “initial segment–somadendritic (IS-SD) break.” The voltage dependence of the gating rate constants remains invariant between 7 and 23°C and between 30 and 37°C, but undergoes a transition between 23 and 30°C. Both gating-kinetic and ion-permeability Q10s remain virtually constant between 23 and 37°C (kinetic Q10s = 1.9–1.95; permeability Q10s = 1.49–1.64). The Q10s systematically increase for T <23°C (kinetic Q10 = 8 at T = 8°C). The Na channels were consistently “sleepy” (non-Arrhenius) for T <8°C, with a loss of spiking for T <7°C.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3