Affiliation:
1. Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233
Abstract
Reticulospinal neurons of the lamprey brain stem receive rhythmic input from the spinal cord during locomotor activity. The goal of the present study was to determine whether such spinal input has a direct component to reticulospinal neurons or depends on brain stem interneurons. To answer this question, an in vitro lamprey brain stem-spinal cord preparation was used with a diffusion barrier placed caudal to the obex, separating the experimental chamber into two baths. Locomotor activity was induced in the spinal cord by perfusion of d-glutamate or N-methyl-dl-aspartate into the spinal cord bath. The brain stem bath was first perfused with normal Ringer solution followed by a high-Ca2+, -Mg2+ solution, which reduced polysynaptic transmission. The amplitudes of membrane potential oscillations of reticulospinal neurons in the posterior and middle rhombencephalic reticular nuclei (PRRN and MRRN, respectively) recorded with sharp intracellular microelectrodes did not significantly change from normal to high-divalent solution. This finding suggests a large part of the spinal input creating the oscillations is direct to the reticulospinal neurons. Application of strychnine to the high-Ca2+, -Mg2+ solution decreased membrane potential oscillation amplitude, and injection of Cl− reversed presumed inhibitory postsynaptic potentials, indicating a role for direct spinal inhibitory inputs. Although reduced, the persistence of oscillations in strychnine suggests that spinal excitatory inputs also contribute to the oscillations. Thus it was concluded that both excitatory and inhibitory spinal neurons provide direct rhythmic inputs to reticulospinal cells of the PRRN and MRRN during locomotor activity. These inputs provide reticulospinal cells with information regarding the activity of the spinal locomotor networks.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献