Characterization of the Heteromeric Potassium Channel Formed by Kv2.1 and the Retinal Subunit Kv8.2 in Xenopus Oocytes

Author:

Czirják Gábor,Tóth Zsuzsanna E.,Enyedi Péter

Abstract

Kv8.2 (KCNV2) subunits do not form homotetrameric potassium channels, although they coassemble with Kv2.1 to constitute functional heteromers. High expression of Kv8.2 was reported in the human retina and its mutations were linked to the visual disorder “cone dystrophy with supernormal rod electroretinogram.” We detected abundant Kv8.2 expression in the photoreceptor layer of mouse retina, where Kv2.1 is also known to be present. When the two subunits were coexpressed in Xenopus oocytes in equal amounts, Kv8.2 abolished the current of Kv2.1. If the proportion of Kv8.2 was reduced then the current of heteromeric channels emerged. Kv8.2 shifted the steady-state activation of Kv2.1 to more negative potentials, without affecting the voltage dependence of inactivation. This gave rise to a window current within the −40 to −10 mV membrane potential range. Ba2+ inhibited the heteromeric channel and shifted its activation to more positive potentials. These electrophysiological and pharmacological properties resemble those of the voltage-gated K+ current (named IKx) described in amphibian retinal rods. Furthermore, oocytes expressing Kv2.1/Kv8.2 developed transient hyperpolarizing overshoots in current-clamp experiments, whereas those expressing only Kv2.1 failed to do so. Similar overshoots are characteristic responses of photoreceptors to light flashes. We demonstrated that Kv8.2 G476D, analogous to a disease-causing human mutation, eliminated Kv2.1 current, if the subunits were coexpressed equally. However, Kv8.2 G476D did not form functional heteromers under any conditions. Therefore we suggest that the custom-tailored current of Kv2.1/Kv8.2 functionally contributes to photoreception, and this is the reason that mutations of Kv8.2 lead to a genetic visual disorder.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3