In Vitro Odor-Aversion Conditioning in a Terrestrial Mollusk

Author:

Inoue Tsuyoshi,Murakami Masayoshi,Watanabe Satoshi,Inokuma Yasuko,Kirino Yutaka

Abstract

We developed an in vitro odor-aversion conditioning system in the terrestrial mollusk, Limax, and found a behavioral correlate of network oscillation in the olfactory CNS. We first examined the odor-induced behavior of Limax, after odor-aversion conditioning in vivo. Shortening of mantle muscles was specifically observed in response to aversively conditioned odors. We previously identified that parietal nerves, which project to the mantle muscle in Limax, regulate shortening of the mantle muscle. We therefore isolated whole brains containing noses (sensory organs) and parietal nerves (motor output), and applied an odor-aversion conditioning paradigm to these in vitro preparations. Before the in vitro conditioning, application of attractive odors to the noses did not elicit any discharge in the parietal nerves. However, after odor-aversion conditioning, discharges in the parietal nerves were observed in response to the natively attractive but aversively conditioned odors. We also found that network oscillation frequency in the procerebrum (PC), the olfactory CNS of Limax, increased specifically in response to the aversively conditioned odors that elicited avoidance behavior. In naive (nonconditioned) preparations, increases in the PC oscillation frequency were observed specifically in response to innately aversive odors. These results indicate that the isolated brains have an ability of odor learning. They also suggest that changes in PC network oscillation are associated with aversively conditioned and innately aversive odors, both of which elicit avoidance behavior. This in vitro conditioning system would be an effective approach for exploring the neural mechanism to determine the aversion to odors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3