Altered R-spondin 1/CART neurocircuit in the hypothalamus contributes to hyperphagia in diabetes

Author:

Li Ji-Yao1,Wu Xiaoyin1,Lee Allen1,Zhou Shi-Yi1,Owyang Chung1ORCID

Affiliation:

1. Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan

Abstract

Hyperphagia is common in diabetes and may worsen hyperglycemia and diabetic complications. The responsible mechanisms are not well understood. The hypothalamus is a key center for the control of appetite and energy homeostasis. The ventromedial nucleus (VMH) and arcuate nucleus (ARC) are two critical nuclei involved in these processes. We have reported that R-spondin 1 (Rspo1) and its receptor leucin-rich repeat and G protein-coupled receptor 4 (LGR4) in the VMH and ARC suppressed appetite, but the downstream neuronal pathways are unclear. Here we show that neurons containing cocaine and amphetamine-regulated transcript (CART) in ARC express both LGR4 and insulin receptor; intracerebroventricular injection of Rspo1 induced c-Fos expression in CART neurons of ARC; and silencing CART in ARC attenuated the anorexigenic actions of Rspo1. In diabetic and obese fa/fa rats, Rspo1 mRNA in VMH and CART mRNA in ARC were reduced; this was accompanied by increased food consumption. Insulin treatment restored Rspo1 and CART gene expressions and normalized eating behavior. Chronic intracerebroventricular injection of Rspo1 inhibited food intake and normalized diabetic hyperphagia; intracerebroventricular injection of Rspo1 or insulin increased CART mRNA in ARC. In the CART neuron cell line, Rspo1 and insulin potentiated each other on pERK and β-catenin, and in rats, they acted synergistically to inhibit food intake. Silencing Rspo1 in VMH reduced CART expression in ARC and attenuated the inhibitory effect of insulin on food intake. In conclusion, our data indicated that CART works downstream of Rspo1 and Rspo1 mediated the action of insulin centrally. The altered Rspo1/CART neurocircuit in the hypothalamus contributes to hyperphagia in diabetes. NEW & NOTEWORTHY This study reports that cocaine and amphetamine-regulated transcript (CART) neurons in the arcuate nucleus (ARC) of hypothalamus acted downstream of R-spondin 1 (Rspo1) to inhibit food intake. The Rspo1 mRNA level in ventromedial nucleus (VMH) and CART mRNA level in ARC were reduced in type 1 diabetic rat and obese fa/fa rat. Rspo1 and insulin acted synergistically on phospho-ERK and β-catenin signal pathways and in suppressing food intake. The current results proposed that altered Rspo1/CART neurocircuit in the hypothalamus contributes to hyperphagia in diabetes.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3