Rapid and lasting enhancement of dopaminergic modulation at the hippocampal mossy fiber synapse by electroconvulsive treatment

Author:

Kobayashi Katsunori12,Imoto Yuki3,Yamamoto Fumi4,Kawasaki Mayu4,Ueno Miyuki4,Segi-Nishida Eri54,Suzuki Hidenori12

Affiliation:

1. Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan;

2. Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan;

3. Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan;

4. Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan

5. Center for Integrative Education in Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and

Abstract

Electroconvulsive therapy (ECT) is an established effective treatment for medication-resistant depression with the rapid onset of action. However, its cellular mechanism of action has not been revealed. We have previously shown that chronic antidepressant drug treatments enhance dopamine D1-like receptor-dependent synaptic potentiation at the hippocampal mossy fiber (MF)-CA3 excitatory synapse. In this study we show that ECT-like treatments in mice also have marked effects on the dopaminergic synaptic modulation. Repeated electroconvulsive stimulation (ECS), an animal model of ECT, strongly enhanced the dopamine-induced synaptic potentiation at the MF synapse in hippocampal slices. Significant enhancement was detectable after the second ECS, and further repetition of ECS up to 11 times monotonously increased the magnitude of enhancement. After repeated ECS, the dopamine-induced synaptic potentiation remained enhanced for more than 4 wk. These synaptic effects of ECS were accompanied by increased expression of the dopamine D1 receptor gene. Our results demonstrate that robust neuronal activation by ECS induces rapid and long-lasting enhancement of dopamine-induced synaptic potentiation at the MF synapse, likely via increased expression of the D1 receptor, at least in part. This rapid enhancement of dopamine-induced potentiation at the excitatory synapse may be relevant to the fast-acting antidepressant effect of ECT. NEW & NOTEWORTHY We show that electroconvulsive therapy (ECT)-like stimulation greatly enhances synaptic potentiation induced by dopamine at the excitatory synapse formed by the hippocampal mossy fiber in mice. The effect of ECT-like stimulation on the dopaminergic modulation was rapidly induced, maintained for more than 4 wk after repeated treatments, and most likely mediated by increased expression of the dopamine D1 receptor. These effects may be relevant to fast-acting strong antidepressant action of ECT.

Funder

Japan Society for the Promotion of Science (JSPS)

Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST)

Takeda Science Foundation

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3