Contributions of optostatic and optokinetic cues to the perception of vertical

Author:

Niehof Nynke1,Perdreau Florian1ORCID,Koppen Mathieu1,Medendorp W. Pieter1ORCID

Affiliation:

1. Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands

Abstract

While it has been well established that optostatic and optokinetic cues contribute to the perception of vertical, it is unclear how the brain processes their combined presence with the nonvisual vestibular cues. Using a psychometric approach, we examined the percept of vertical in human participants ( n = 17) with their body and head upright, presented with a visual frame tilted at one of eight orientations (between ±45°, steps of 11.25°) or no frame, surrounded by an optokinetic roll-stimulus (velocity =  ±30°/s or stationary). Both cues demonstrate relatively independent biases on vertical perception, with a sinusoidal modulation by frame orientation of ~4° and a general shift of ~1–2° in the rotation direction of the optic flow. Variability was unaffected by frame orientation but was higher with than without optokinetic rotation. An optimal-observer model in which vestibular, optostatic, and optokinetic cues provide independent sources to vertical perception was unable to explain these data. In contrast, a model in which the optokinetic signal biases the internal representation of gravity, which is then optimally integrated with the optostatic cue, provided a good account, at the individual participant level. We conclude that optostatic and optokinetic cues interact differently with vestibular cues in the neural computations for vertical perception. NEW & NOTEWORTHY Static and dynamic visual cues are known to bias the percept of vertical, but how they interact with vestibular cues remains to be established. Guided by an optimal-observer model, the present results suggest that optokinetic information is combined with vestibular information into a single, vestibular-optokinetic estimate, which is integrated with an optostatically derived estimate of vertical.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3