Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells

Author:

Takahashi Izumi1,Yoshino Masami1

Affiliation:

1. Department of Biology, Tokyo Gakugei University, Tokyo, Japan

Abstract

In this study, we examined the functional coupling between Na+-activated potassium (KNa) channels and Na+ influx through voltage-dependent Na+ channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability ( Po) of KNa channels increased with increasing Na+ concentration in a bath solution, whereas it decreased by the substitution of Na+ with an equimolar concentration of Li+. The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast ( INaf) and persistent ( INaP) Na+ currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd2+ at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca2+-channel blockers Co2+ and Ni2+ at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd2+ (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na+ influx. Taken together, these results indicate that KNa channels could be activated by Na+ influx passing through voltage-dependent persistent Na+ channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3