Affiliation:
1. Department of Zoology, University of Otago, New Zealand
2. Department of Head and Neck Surgery, Brain Research Institute, Geffen School of Medicine at University of California, Los Angeles, California
Abstract
Semicircular canal afferent neurons transmit information about head rotation to the brain. Mathematical models of how they do this have coevolved with concepts of how brains perceive the world. A 19th-century “camera” metaphor, in which sensory neurons project an image of the world captured by sense organs into the brain, gave way to a 20th-century view of sensory nerves as communication channels providing inputs to dynamical control systems. Now, in the 21st century, brains are being modeled as Bayesian observers who infer what is happening in the world given noisy, incomplete, and distorted sense data. The semicircular canals of the vestibular apparatus provide an experimentally accessible, low-dimensional system for developing and testing dynamical Bayesian generative models of sense data. In this review, we summarize advances in mathematical modeling of information transmission by semicircular canal afferent sensory neurons since the first such model was proposed nearly a century ago. Models of information transmission by vestibular afferent neurons may provide a foundation for developing realistic models of how brains perceive the world by inferring the causes of sense data.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献