Synaptic Inputs to Granule Cells of the Dorsal Cochlear Nucleus

Author:

Balakrishnan Veeramuthu,Trussell Laurence O.

Abstract

The mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with nonauditory signals via a cerebellar-like granule cell circuit. Although granule cells carry nonauditory information to the DCN, almost nothing is known about their physiology. Here we describe electrophysiological features of synaptic inputs to granule cells in the DCN by in vitro patch-clamp recordings from P12 to P22 rats. Granule cells ranged from 6 to 8 μm in cell body diameter and had high-input resistance. Excitatory postsynaptic currents consisted of both AMPA receptor-mediated and N-methyl-d-aspartate receptor-mediated currents. Synaptically evoked excitatory postsynaptic currents ranged from −25 to −140 pA with fast decay time constants. Synaptic stimulation evoked both short- and long-latency synaptic responses that summated to spike threshold, indicating the presence of a polysynaptic excitatory pathway in the granule cell circuit. Synaptically evoked inhibitory postsynaptic currents in Cl-loaded cells ranged from −30 to −1,021 pA and were mediated by glycine and, to a lesser extent, GABAA receptors. Unlike cerebellar granule cells, DCN granule cells lacked tonic inhibition by GABA. The glycinergic synaptic conductance was mediated by heteromeric glycine receptors and was far stronger than the glutamatergic conductance, suggesting that glycinergic neurons may act to gate nonauditory signals in the DCN.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference70 articles.

1. Alibardi L. Characterization of tuberculo-ventral neurons in the dorsal cochlear nucleus of the guinea pig. J Submicrosc Cytol Pathol 31: 295–300, 1999.

2. Ultrastructural distribution of glycinergic and GABAergic neurons and axon terminals in the rat dorsal cochlear nucleus, with emphasis on granule cell areas

3. Alibardi L. Ultrastructural immunocytochemistry for glycine in neurons of the dorsal cochlear nucleus of the guinea pig. J Submicrosc Cytol Pathol 35: 373–387, 2003b.

4. Alibardi L. Mossy fibers in granule cell areas of the rat dorsal cochlear nucleus from intrinsic and extrinsic origin innervate unipolar brush cell glomeruli. J Submicrosc Cytol Pathol 36: 193–210, 2004.

5. Staggered Development of GABAergic and Glycinergic Transmission in the MNTB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3