How attention extracts objects from noise

Author:

Pratte Michael S.1,Ling Sam1,Swisher Jascha D.1,Tong Frank1

Affiliation:

1. Psychology Department and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee

Abstract

The visual system is remarkably proficient at extracting relevant object information from noisy, cluttered environments. Although attention is known to enhance sensory processing, the mechanisms by which attention extracts relevant information from noise are not well understood. According to the perceptual template model, attention may act to amplify responses to all visual input, or it may act as a noise filter, dampening responses to irrelevant visual noise. Amplification allows for improved performance in the absence of visual noise, whereas a noise-filtering mechanism can only improve performance if the target stimulus appears in noise. Here, we used fMRI to investigate how attention modulates cortical responses to objects at multiple levels of the visual pathway. Participants viewed images of faces, houses, chairs, and shoes, presented in various levels of visual noise. We used multivoxel pattern analysis to predict the viewed object category, for attended and unattended stimuli, from cortical activity patterns in individual visual areas. Early visual areas, V1 and V2, exhibited a benefit of attention only at high levels of visual noise, suggesting that attention operates via a noise-filtering mechanism at these early sites. By contrast, attention led to enhanced processing of noise-free images (i.e., amplification) only in higher visual areas, including area V4, fusiform face area, mid-Fusiform area, and the lateral occipital cortex. Together, these results suggest that attention improves people's ability to discriminate objects by de-noising visual input in early visual areas and amplifying this noise-reduced signal at higher stages of visual processing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3