Long-Latency Responses During Reaching Account for the Mechanical Interaction Between the Shoulder and Elbow Joints

Author:

Kurtzer Isaac1,Pruszynski J. Andrew1,Scott Stephen H.123

Affiliation:

1. Centre for Neuroscience Studies,

2. Department of Anatomy and Cell Biology, and

3. Department of Medicine, Queen's University, Kingston, Ontario, Canada

Abstract

Although considerable research indicates that reaching movements rely on knowledge of the arm's mechanical properties and environment to anticipate and counter predictable loads, far less research has examined whether this degree of sophistication is present for on-line corrections during reaching. Here we examine the R2/3 response to mechanical perturbations (45–100 ms, also called the long-latency reflex), which is highly flexible and includes the fastest possible contribution from primary motor cortex, a key neural substrate for self-initiated action. Torque perturbations were occasionally and unexpectedly applied to the subject's shoulder and/or elbow in the course of performing reaching movements. Critically, these perturbations would evoke different patterns of feedback corrections from a shoulder extensor muscle if it countered only the local shoulder displacement relative to unperturbed motion or accounted for the mechanical interactions between the shoulder and elbow joints and countered the underlying shoulder torque. Our results show that the earliest response (R1: 20–45 ms) reflected local shoulder displacement, whereas the R2/3 response (45–100 ms) reflected knowledge of multijoint dynamics. Moreover, the same pattern of feedback occurred whether the shoulder muscle helped initiate the movement (during its agonist phase) or helped terminate the movement (during its antagonist phase). These results contribute to the accumulating evidence that highly sophisticated feedback control underlies motor behavior and are consistent with a shared neural substrate, such as primary motor cortex, for feedforward and feedback control.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3