Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo

Author:

Aiba Isamu1,Carlson Andrew P.2,Sheline Christian T.3,Shuttleworth C. William1

Affiliation:

1. Departments of 1Neurosciences and

2. Neurosurgery, University of New Mexico, Albuquerque, New Mexico; and

3. Department of Ophthalmology and the Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana

Abstract

Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn2+ is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn2+ accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn2+ concentrations with exogenous ZnCl2 reduced SD propagation rates. Selective chelation of endogenous Zn2+ (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn2+ derived from synaptic vesicles. Thus, in tissues where synaptic Zn2+ release was absent [knockout (KO) of vesicular Zn2+ transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn2+ in these tissues. The role of synaptic Zn2+ was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn2+ can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn2+ on SD may counteract to some extent the neurotoxic effects of intracellular Zn2+ accumulation in acute brain injury models.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3