Altered cortical spectrotemporal processing with age-related hearing loss

Author:

Trujillo Michael1,Razak Khaleel A.1

Affiliation:

1. Graduate Neuroscience Program and Department of Psychology, University of California, Riverside, California

Abstract

Presbycusis (age-related hearing loss) is a prevalent disability associated with aging that impairs spectrotemporal processing, but the mechanisms of such changes remain unclear. The goal of this study was to quantify cortical responses to frequency-modulated (FM) sweeps in a mouse model of presbycusis. Previous studies showed that cortical neurons in young mice are selective for the rate of frequency change in FM sweeps. Here single-unit data on cortical selectivity and response variability to FM sweeps of either direction and different rates (0.08–20 kHz/ms) were compared across young (1–3 mo), middle-aged (6–8 mo), and old (14–20 mo) groups. Three main findings are reported. First, there is a reduction in FM rate selectivity in the old group. Second, there is a slowing of the sweep rates at which neurons likely provide best detection and discrimination of sweep rates. Third, there is an increase in trial-to-trial variability in the magnitude and timing of spikes in response to sweeps. These changes were only observed in neurons that were selective for the fast or intermediate range of sweep rates and not in neurons that preferred slow sweeps or were nonselective. Increased variability of response magnitude, but not changes in temporal fidelity or selectivity, was seen even in the middle-aged group. The results show that spectrotemporal processing becomes slow and noisy with presbycusis in specific types of neurons, suggesting receptive field mechanisms that are altered. These data suggest neural correlates of presbycusis-related reduction in the ability of humans to process rapid spectrotemporal changes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3