Visual Efference Neuromodulates Retinal Timing: In Vivo Roles of Octopamine, Substance P, Circadian Phase, and Efferent Activation in Limulus

Author:

Bolbecker Amanda R.,Lim-Kessler Corrinne C. M.,Li Jia,Swan Alicia,Lewis Adrienne,Fleets Jennifer,Wasserman Gerald S.

Abstract

Efferent nerves coursing from the brain to the lateral eye of the horseshoe crab, Limulus polyphemus, increase its nighttime sensitivity to light. They release octopamine, which produces a categorical increase of photoreceptor response duration in vitro. Analogous in vivo timing effects on the electroretinogram (ERG) were demonstrated when octopamine was infiltrated into the eye of an otherwise intact animal; nighttime ERGs were longer than daytime ERGs. Related effects on the ERG were produced by daytime electrical stimulation of efferent fibers. Surprisingly, in a departure from effects predicted solely from in vitro octopamine data, nighttime ERG onsets were also accelerated relative to daytime ERG onsets. Drawing on earlier reports, these remarkable accelerations led to an examination of substance P as another candidate neuromodulator. It demonstrated that infiltrations of either modulator into the lateral eyes of otherwise intact crabs increased the amplitude of ERG responses but that each candidate modulator induced daytime responses that specifically mimicked one of the two particular aspects of the timing differences between day- and nighttime ERGs: octopamine increased the duration of daytime ERGs and substance P infiltrated during the day accelerated response onset. These results indicate that, in addition to octopamine's known role as an efferent neuromodulator that increases nighttime ERG amplitudes, octopamine clearly also affects the timing of photoreceptor responses. But these infiltration data go further and strongly suggest that substance P may also be released into the lateral eye at night, thereby accelerating the ERG's onset in addition to increasing its amplitude.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3