Affiliation:
1. Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
Abstract
Focal stimulation in the frontal eye field (FEF) evoked eye movements that were often accompanied by neck movements. Experiments were performed with concurrent recording of both movements in trained monkeys. We recorded neck forces under a head-restrained condition with a force-measuring system. With the system, we measured forces along the x-, y-, and z-axes and torque about the z-axis. Torque about the z-axis that represented yaw rotation of the head was significantly affected by stimulation. We found that stimulation generated two types of motor actions of the eyes and neck. In the first type, contraversive neck forces were evoked by stimulation of the medial part of the FEF, where contraversive saccadic eye movements with large amplitudes were evoked. When the stimulus intensity was increased, saccades were evoked in an all-or-none manner, whereas the amplitude of neck forces increased gradually. In the second type, contraversive neck forces were evoked by stimulation of the medial and caudal part of the FEF, where ipsiversive slow eye movements were evoked. The depth profiles of amplitudes of neck forces were almost parallel to those of eye movements in individual stimulation tracks. The present results suggest that the FEF is involved in the control of motor actions of the neck as well as the eyes. The FEF area associated with contraversive saccades and contraversive neck movements may contribute to a gaze shift process, whereas that associated with ipsiversive slow eye movements and contraversive neck movements may contribute to a visual stabilization process. NEW & NOTEWORTHY Focal stimulation in the frontal eye field (FEF) evoked eye and neck movements. We recorded neck forces under a head-restrained condition with a force-measuring system. Taking advantage of this approach, we could analyze slow eye movements that were dissociated from the vestibuloocular reflex. We found ipsiversive slow eye movements in combination with contraversive neck forces, suggesting that the FEF may be a source of a corollary discharge signal for compensatory eye movements during voluntary neck movements.
Funder
Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献