Motor action of the frontal eye field on the eyes and neck in the monkey

Author:

Izawa Yoshiko1,Suzuki Hisao1

Affiliation:

1. Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan

Abstract

Focal stimulation in the frontal eye field (FEF) evoked eye movements that were often accompanied by neck movements. Experiments were performed with concurrent recording of both movements in trained monkeys. We recorded neck forces under a head-restrained condition with a force-measuring system. With the system, we measured forces along the x-, y-, and z-axes and torque about the z-axis. Torque about the z-axis that represented yaw rotation of the head was significantly affected by stimulation. We found that stimulation generated two types of motor actions of the eyes and neck. In the first type, contraversive neck forces were evoked by stimulation of the medial part of the FEF, where contraversive saccadic eye movements with large amplitudes were evoked. When the stimulus intensity was increased, saccades were evoked in an all-or-none manner, whereas the amplitude of neck forces increased gradually. In the second type, contraversive neck forces were evoked by stimulation of the medial and caudal part of the FEF, where ipsiversive slow eye movements were evoked. The depth profiles of amplitudes of neck forces were almost parallel to those of eye movements in individual stimulation tracks. The present results suggest that the FEF is involved in the control of motor actions of the neck as well as the eyes. The FEF area associated with contraversive saccades and contraversive neck movements may contribute to a gaze shift process, whereas that associated with ipsiversive slow eye movements and contraversive neck movements may contribute to a visual stabilization process. NEW & NOTEWORTHY Focal stimulation in the frontal eye field (FEF) evoked eye and neck movements. We recorded neck forces under a head-restrained condition with a force-measuring system. Taking advantage of this approach, we could analyze slow eye movements that were dissociated from the vestibuloocular reflex. We found ipsiversive slow eye movements in combination with contraversive neck forces, suggesting that the FEF may be a source of a corollary discharge signal for compensatory eye movements during voluntary neck movements.

Funder

Ministry of Education, Culture, Sports, Science, and Technology (MEXT)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3