Sepiapterin alleviates impaired gastric nNOS function in spontaneous diabetic female rodents through NRF2 mRNA turnover and miRNA biogenesis pathway

Author:

Gangula Pandu R.1,Challagundla Kishore B.2,Ravella Kalpana1,Mukhopadhyay Sutapa1,Chinnathambi Vijayakumar3,Mittal Mukul K.4,Sekhar K. Raja5,Sampath Chethan1

Affiliation:

1. Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee

2. Department of Biochemistry and Molecular Biology, and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska

3. Veterinary Training and Research Centre, Chennai, India

4. Department of Medicine, Division of Gastroenterology and Hepatology, Vanderbilt University Medical Center, Nashville, Tennessee

5. Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee

Abstract

An impaired nitrergic system and altered redox signaling contribute to gastric dysmotility in diabetics. Our earlier studies show that NF-E2-related factor 2 (NRF2) and phase II antioxidant enzymes play a vital role in gastric neuronal nitric oxide synthase (nNOS) function. This study aims to investigate whether supplementation of sepiapterin (SEP), a precursor for tetrahydrobiopterin (BH4) (a cofactor of NOS) via the salvage pathway, restores altered nitrergic systems and redox balance in spontaneous diabetic (DB) female rats. Twelve-week spontaneous DB and age-matched, non-DB rats, with and without dietary SEP (daily 20 mg/kg body wt for 10 days) treatment, were used in this study. Gastric antrum muscular tissues were excised to investigate the effects of SEP in nitrergic relaxation and the nNOS-nitric oxide (NO)-NRF2 pathway(s). Dietary SEP supplementation significantly ( P < 0.05) reverted diabetes-induced changes in nNOS dimerization and function; nitric oxide (NO) downstream signaling molecules; HSP-90, a key regulator of nNOSα activity and dimerization; miRNA-28 that targets NRF2 messenger RNA (mRNA), and levels of microRNA (miRNA) biogenesis pathway components, such as DGCR8 (DiGeorge Syndrome Critical Region Gene 8) and TRBP (HIV1-1 transactivating response RNA-binding protein). These findings emphasize the importance of the BH4 pathway in regulating gastric motility functions in DB animals by modulating nNOSα dimerization in association with changes in enteric NRF2 and NO downstream signaling. Our results also identify a new pathway, wherein SEP regulates NRF2 mRNA turnover by suppressing elevated miRNA-28, which could be related to alterations in miRNA biogenesis pathway components. NEW & NOTEWORTHY This study is the first to show a causal link between NF-E2-related factor 2 (NRF2) and neuronal nitric oxide synthase (nNOS) in gastric motility function. Our data demonstrate that critical regulators of the miRNA biosynthetic pathway are upregulated in the diabetic (DB) setting; these regulators were rescued by sepiapterin (SEP) treatment. Finally, we show that low dihydrofolate reductase expression may lead to impaired nNOS dimerization/function-reduced nitric oxide downstream signaling and elevate oxidative stress by suppressing the NRF2/phase II pathway through miRNA; SEP treatment restored all of the above in DB gastric muscular tissue. We suggest that tetrahydrobiopterin supplementation may be a useful therapy for patients with diabetes, as well as women with idiopathic gastroparesis.

Funder

HHS | NIH | National Institute of General Medical Sciences (NIGMS)

NIDDK

NIMHD

K22

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3