PKC-ζ is required in EGF protection of microtubules and intestinal barrier integrity against oxidant injury

Author:

Banan A.1,Fields J. Z.1,Talmage D. A.2,Zhang L.1,Keshavarzian A.1

Affiliation:

1. Departments of Internal Medicine (Division of Digestive Diseases), Pharmacology, and Molecular Physiology, Rush University Medical Center, Chicago, Illinois 60612 and

2. Institute of Human Nutrition, Columbia University, New York, New York 10032.

Abstract

Using monolayers of human intestinal (Caco-2) cells, we showed that epidermal growth factor (EGF) protects intestinal barrier integrity against oxidant injury by protecting the microtubules and that protein kinase C (PKC) is required. Because atypical PKC-ζ isoform is abundant in wild-type (WT) Caco-2 cells, we hypothesized that PKC-ζ mediates, at least in part, EGF protection. Intestinal cells (Caco-2 or HT-29) were transfected to stably over- or underexpress PKC-ζ. These clones were preincubated with low or high doses of EGF or a PKC activator [1-oleoyl-2-acetyl- sn-glycerol (OAG)] before oxidant (0.5 mM H2O2). Relative to WT cells exposed to oxidant, only monolayers of transfected cells overexpressing PKC-ζ (2.9-fold) were protected against oxidant injury as indicated by increases in polymerized tubulin and decreases in monomeric tubulin, enhancement of architectural stability of the microtubule cytoskeleton, and increases in monolayer barrier integrity toward control levels (62% less leakiness). Overexpression-induced protection was OAG independent and even EGF independent, but EGF significantly potentiated PKC-ζ protection. Most overexpressed PKC-ζ (92%) resided in membrane and cytoskeletal fractions, indicating constitutive activation of PKC-ζ. Stably inhibiting PKC-ζ expression (95%) with antisense transfection substantially attenuated EGF protection as demonstrated by reduced tubulin assembly and increased microtubule disassembly, disruption of the microtubule cytoskeleton, and loss of monolayer barrier integrity. We conclude that 1) activation of PKC-ζ is necessary for EGF-induced protection, 2) PKC-ζ appears to be an endogenous stabilizer of the microtubule cytoskeleton and of intestinal barrier function against oxidative injury, and 3) we have identified a novel biological function (protection) among the atypical isoforms of PKC.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3