Intestine of dystrophic mice presents enhanced contractile resistance to stretching despite morphological impairment

Author:

Alves Gabriel A.1,Silva Luisa R.1,Rosa Eloi F.1,Aboulafia Jeannine1,Freymüller-Haapalainen Edna2,Souccar Caden3,Nouailhetas Viviane L. A.1

Affiliation:

1. Department of Biophysics, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil;

2. Centro de Microscopia Eletrônica, Escola Paulista de Medicina-Universidade Federal de São Paulo-São Paulo, Brazil; and

3. Department of Pharmacology, Escola Paulista de Medicina-Universidade Federal de São Paulo-São Paulo, Brazil

Abstract

Protein dystrophin is a component of the dystrophin-associated protein complex, which links the contractile machinery to the plasma membrane and to the extracellular matrix. Its absence leads to a condition known as Duchenne muscular dystrophy (DMD), a disease characterized by progressive skeletal muscle degeneration, motor disability, and early death. In mdx mice, the most common DMD animal model, loss of muscle cells is observed, but the overall disease alterations are less intense than in DMD patients. Alterations in gastrointestinal tissues from DMD patients and mdx mice are not yet completely understood. Thus, we investigated the possible relationships between morphological (light and electron microscopy) and contractile function (by recording the isometric contractile response) with alterations in Ca2+handling in the ileum of mdx mice. We evidenced a 27% reduction in the ileal muscular layer thickness, a partial damage to the mucosal layer, and a partial damage to mitochondria of the intestinal myocytes. Functionally, the ileum from mdx presented an enhanced responsiveness during stretch, a mild impairment in both the electromechanical and pharmacomechanical signaling associated with altered calcium influx-induced contraction, with no alterations in the sarcoplasmic reticulum Ca2+storage (maintenance of the caffeine and thapsigargin-induced contraction) compared with control animals. Thus, it is evidenced that the protein dystrophin plays an important role in the preservation of both the microstructure and ultrastructure of mice intestine, while exerting a minor but important role concerning the intestinal contractile responsiveness and calcium handling.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3