Tumor suppressor FOXO3 mediates signals from the EGF receptor to regulate proliferation of colonic cells

Author:

Qi Wentao1,Weber Christopher R.2,Wasland Kaarin1,Roy Hemant1,Wali Ramesh1,Joshi Suhasini1,Savkovic Suzana D.1

Affiliation:

1. Department of Medicine, Division of Gastroenterology; NorthShore University Research Institute, Evanston; and

2. Department of Pathology, The University of Chicago; Chicago, Illinois

Abstract

Epithelial proliferation, critical for homeostasis, healing, and colon cancer progression, is in part controlled by epidermal growth factor receptor (EGFR). Proliferation of colonic epithelia can be induced by Citrobacter rodentium infection, and we have demonstrated that activity of tumor suppressor FOXO3 was attenuated after this infection. Thus the aim of this study was to determine the contribution of FOXO3 in EGFR-dependent proliferation of intestinal epithelia and colon cancer cell lines. In this study we show that, during infection with C. rodentium, EGFR was significantly phosphorylated in colonic mucosa and Foxo3 deficiency in this model lead to an increased number of bromodeoxyuridine-positive cells. In vitro, in human colon cancer cells, increased expression and activation of EGFR was associated with proliferation that leads to FOXO3 phosphorylation (inactivation). Following EGFR activation, FOXO3 was phosphorylated (via phosphatidylinositol 3-kinase/Akt) and translocated to the cytosol where it was degraded. Moreover, inhibition of proliferation by overexpressing FOXO3 was not reversed by the EGFR signaling, implicating FOXO3 as one of the regulators downstream of EGFR. FOXO3 binding to the promoter of the cell cycle inhibitor p27kip1 was decreased by EGFR signaling, suggesting its role in EGFR-dependent proliferation. In conclusion, we show that proliferation in colonic epithelia and colon cancer cells, stimulated by EGFR, is mediated via loss of FOXO3 activity and speculate that FOXO3 may serve as a target in the development of new pharmacological treatments of proliferative diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3