Synaptic transmission in simple motility reflex pathways excited by distension in guinea pig distal colon

Author:

Bian X.-C.,Heffer L. F.,Gwynne R. M.,Bornstein J. C.,Bertrand P. P.

Abstract

We examined specific receptor/transmitter combinations used at functionally identified synapses in ascending and descending reflex pathways of guinea pig distal colon. Excitatory (EJPs) or inhibitory junction potentials (IJPs) were recorded intracellularly from nicardipine-paralyzed circular smooth muscle in either the oral or anal recording chamber of a three-chambered organ bath, respectively. Blockade of synaptic transmission in the central chamber with a 0.25 mM Ca2+/12 mM Mg2+ solution abolished EJPs evoked by distension applied either in the central or the far (anal) chamber. IJPs evoked by distension in the central or the far (oral) chamber were depressed to ∼50% of control. Hexamethonium (nicotinic receptor antagonist, 200 μM) in the central chamber reduced IJPs evoked by far or central distension to 50%, whereas EJPs evoked by far distension were abolished and EJPs evoked by central distension were reduced to 70% of control. Hexamethonium in the recording chambers reduced both IJPs and EJPs evoked by central distension to ∼50%. EJPs in the ascending pathway were unaffected by blockade of muscarinic receptors in the central chamber or blockade of neurokinin 3 tachykinin receptors in this or the recording chamber. In the descending pathway, blockade of P2 receptors in the same chambers had only a minor effect on distension-evoked IJPs. Thus some intrinsic sensory neurons of guinea pig colon have long descending projections (>30 mm), but ascending projections of <15 mm. In contrast to the ileum, transmission between ascending or descending interneurons and from sensory neurons to descending interneurons is predominantly via nicotinic receptors; but transmission to inhibitory or excitatory motoneurons and from sensory neurons to ascending interneurons involves nicotinic and other unidentified receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3