Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini

Author:

Malo A.1,Krüger B.2,Seyhun E.1,Schäfer C.1,Hoffmann R. T.3,Göke B.1,Kubisch C. H.1

Affiliation:

1. Department of Internal Medicine II, Campus Großhadern, University of Munich;

2. Institute of Pathology, University of Rostock, Rostock; and

3. Institute of Clinical Radiology, University of Munich, Munich, Germany

Abstract

Endoplasmic reticulum (ER) stress leads to accumulation of un- or misfolded proteins inside the ER and initiates the unfolded protein response (UPR). Several UPR components are physiologically involved in pancreatic development and are pathophysiologically activated during acute pancreatitis. However, the exact role of ER stress in exocrine pancreatic acini is mainly unclear. The present study examined the effects of tauroursodeoxycholic acid (TUDCA), a known ER chaperone, on acinar function and UPR components. Isolated rat pancreatic acini were stimulated by increasing concentrations of cholecystokinin (CCK-8) with or without preincubation of TUDCA. UPR components were analyzed, including chaperone binding protein (BiP), protein kinase-like ER kinase (PERK), X-box binding protein (XBP)-1, c-Jun NH2-terminal kinase (JNK), CCAAT/enhancer binding protein homologues protein (CHOP), caspase 3 activation, and apoptosis. In addition, TUDCA effects were measured on amylase secretion, calcium signaling, trypsin, and cathepsin B activation. TUDCA preincubation led to a significant increase in amylase secretion after CCK-8 stimulation, a 50% reduction of intracellular trypsin activation, and reduced cathepsin B activity, although the effects for cathepsin B were not statistical significant. Furthermore, TUDCA prevented the CCK-8-induced BiP upregulation, diminished PERK and JNK phosphorylation, and prohibited the expression of CHOP, caspase 3 activation and apoptosis. XBP-1 splicing was not altered. ER stress response mechanisms are activated in pancreatic inflammation. Chemical chaperones enhance enzyme secretion of pancreatic acini, reduce ER stress responses, and attenuate ER stress-associated apoptosis. These data hint new perspectives for an employment of chemical chaperones in the therapy of acute pancreatitis.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3