Overexpression of Krüppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells

Author:

Goldstein Bree G.,Chao Hann-Hsiang,Yang Yizeng,Yermolina Yuliya A.,Tobias John W.,Katz Jonathan P.

Abstract

Krüppel-like factor 5 ( Klf5; also called IKLF or BTEB2), a zinc-finger transcription factor with proproliferative and transforming properties in vitro, is expressed in proliferating cells of gastrointestinal tract epithelia, including in basal cells of the esophagus. Thus, Klf5 is an excellent candidate to regulate esophageal epithelial proliferation in vivo. Nonetheless, the function of Klf5 in esophageal epithelial homeostasis and tumorigenesis in vivo has not previously been determined. Here, we used the ED- L2 promoter of the Epstein-Barr virus to express Klf5 throughout esophageal epithelia. ED-L2/ Klf5 transgenic mice were born at the appropriate Mendelian ratio, survived to at least 1 yr of age, and showed no evidence of esophageal dysplasia or cancer. Staining for bromodeoxyuridine (BrdU) demonstrated increased proliferation in the basal layer of ED-L2/ Klf5 mice, but no proliferation was seen in suprabasal cells, despite ectopic expression of Klf5 in these cells. Notably, expression of the KLF family member Klf4, which binds the same DNA sequences as Klf5 and which inhibits proliferation and promotes differentiation, was not altered in ED-L2/ Klf5 transgenic mice. In primary esophageal keratinocytes that overexpressed Klf5, expression of Klf4 still inhibited proliferation and promoted differentiation, providing a possible mechanism for the persistence of keratinocyte differentiation in ED-L2/ Klf5 mice. To identify additional targets for Klf5 in esophageal epithelia, we performed functional genomic analyses and identified a total of 15 differentially expressed genes. In summary, while Klf5 positively regulates proliferation in basal cells, it is not sufficient to maintain proliferation in the esophageal epithelium.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3