Activation of human and mouse Kupffer cells by lipopolysaccharide is mediated by CD14

Author:

Su Grace L.12,Goyert Sanna M.3,Fan Ming-Hui4,Aminlari Alireza2,Gong Ke Qin2,Klein Richard D.4,Myc Andrzej2,Alarcon William H.4,Steinstraesser Lars4,Remick Daniel G.5,Wang Stewart C.4

Affiliation:

1. Department of Veterans Affairs Medical Center, Ann Arbor, Michigan 48109; Departments of

2. Medicine,

3. North Shore University Hospital/New York University School of Medicine, Manhasset, New York 11030

4. Surgery, and

5. Pathology, University of Michigan, Ann Arbor, 48109-0666; and

Abstract

Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-α (TNF-α) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-α was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-α in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3