Hepatic overexpression ofAbcb11in mice promotes the conservation of bile acids within the enterohepatic circulation

Author:

Henkel Anne S.1,Gooijert Karin E. R.2,Havinga Rick2,Boverhof Renze2,Green Richard M.1,Verkade Henkjan J.2

Affiliation:

1. Division of Hepatology, Department of Medicine, Northwestern University, Chicago, Illinois; and

2. Department of Pediatrics, Beatrix Childrens' Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

The bile salt export pump, encoded by ABCB11, is the predominant canalicular transport protein for biliary bile acid secretion. The level of ABCB11 expression in humans is widely variable yet the impact of this variability on human disease is not well defined. We aim to determine the effect of hepatic Abcb11 overexpression on the enterohepatic circulation (EHC) in mice. We used a stable isotope dilution technique in transgenic mice overexpressing hepatic Abcb11 (TTR- Abcb11) to determine the pool size, fractional turnover rate (FTR), and synthesis rate of the primary bile acid, cholic acid (CA). The gallbladder was cannulated to determine bile flow, bile acid composition, and the biliary secretion rates of CA, total bile acids, phospholipid, and cholesterol. The combined data allowed for estimation of the CA cycling time and the fraction of CA lost per cycle. Hepatic and intestinal gene and protein expression were determined by qPCR and Western blot. Abcb11 overexpression strongly decreased FTR and synthesis rate of CA. Abcb11 overexpression decreased the fraction of CA that was lost per cycle of the EHC. Hepatic expression of Cyp7a1 was suppressed by nearly 50% and ileal expression of FGF15 was increased more than eightfold in TTR- Abcb11 mice. Despite the increased intestinal reabsorption of bile acids, ileal Asbt expression was suppressed. Hepatic Abcb11 overexpression in mice increases the conservation of bile acids within the enterohepatic circulation. These data provide strong evidence for the existence of feed-forward communication between hepatic expression of a bile acid transport protein and the intestine.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3