Polyamine depletion inhibits irradiation-induced apoptosis in intestinal epithelia

Author:

Deng Wenlin,Viar Mary Jane,Johnson Leonard R.

Abstract

Our group has previously shown that polyamine depletion delays apoptosis in rat intestinal epithelial (IEC-6) cells (Ray RM, Viar MJ, Yuan Q, and Johnson LR , Am J Physiol Cell Physiol 278: C480–C489, 2000). Here, we demonstrate that polyamine depletion inhibits γ-irradiation-induced apoptosis in vitro and in vivo. Pretreatment of IEC-6 cells with 5 mM α-difluoromethylornithine (DFMO) for 4 days significantly reduced radiation-induced caspase-3 activity and DNA fragmentation. This protective effect was prevented by the addition of 10 μM exogenous putrescine. Radiation exposure to mice resulted in a high frequency of apoptosis over cells positioned fourth to seventh in crypt-villus units. Pretreatment of mice with 2% DFMO in drinking water significantly reduced apoptotic cells from ∼2.75 to 1.61 per crypt-villus unit, accompanied by significant decreases in caspase-3 levels. Further examination showed that DFMO pretreatment inhibited the radiation-induced increase in the proapoptotic protein Bax. Moreover, DFMO pretreatment significantly enhanced the intestinal crypt survival rate by 2.1-fold subsequent to radiation and ameliorated mucosal structural damage. We conclude that polyamine depletion by DFMO inhibits γ-irradiation-induced apoptosis of intestinal epithelial cells both in vitro and in vivo through inhibition of Bax and caspase-3 activity, which leads to attenuation of radiation-inflicted intestinal injury. These data indicate that DFMO may be therapeutically useful to counteract the gastrointestinal toxicity caused by chemoradiotherapy. This is the first demonstration that polyamines are required for apoptosis in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3