Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat

Author:

Dasarathy Srinivasan1,Dodig Milan1,Muc Sean M.1,Kalhan Satish C.1,McCullough Arthur J.1

Affiliation:

1. Schwartz Center for Metabolism and Nutrition; Department of Medicine, Division of Gastroenterology, and Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, Cleveland, Ohio 44109

Abstract

Proliferation and differentiation of satellite cells are critical in the regeneration of atrophied muscle following immobilization and aging. We hypothesized that impaired satellite cell function is responsible for the atrophy of skeletal muscle also seen in cirrhosis. Myostatin and insulin-like growth factor 1 (IGF1) have been identified to be positive and negative regulators, respectively, of satellite cell function. Using a rat model of cirrhosis [portacaval anastamosis (PCA)] and sham-operated controls, we examined the expression of myostatin, its receptor activinR2b, and its downstream messenger cyclin-dependant kinase inhibitor p21 (CDKI p21) as well as IGF1 and its receptor in the gastrocnemius muscle. Expression of PCNA, a marker of proliferation, and myogenic regulatory factors (myoD, myf5, and myogenin), markers of differentiation of satellite cells, were also measured. Real- time PCR for mRNA and Western blot assay for protein quantification were performed. PCA rats had lower body weight and gastrocnemius weight compared with sham animals ( P < 0.05). PCNA and myogenic regulatory factors were lower in PCA rats ( P < 0.05). Myostatin, activinR2b, and CDKI p21 were higher in the PCA animals ( P < 0.05). The expression of IGF1 and its receptor was lower in liver and skeletal muscle of PCA animals ( P < 0.05). These data suggest that skeletal muscle atrophy seen in the portacaval shunted rats is a consequence of impaired satellite cell proliferation and differentiation mediated, in part, by higher myostatin and lower IGF1 expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3