CD55 limits sensitivity to complement-dependent cytolysis triggered by heterologous expression of α-gal xenoantigen in colon tumor cells

Author:

Wu Yanxia12,Wang Yaogeng12,Qin Feng3,Wang Zhu1,Wang Yu1,Yang Yajun4,Zheng Hong12,Wang Yanping12

Affiliation:

1. Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, China;

2. State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China;

3. Basic Medical Faculty, Dali Medical College, Dali, China; and

4. Sichuan Cord Blood Bank, Chengdu, China

Abstract

Engineering cancer cells to express heterologous antigen α-gal and induce the destruction of tumor cells depending on the complement cascade may be a promising strategy of tumor therapy. However, the feasibility and effect of using α-gal to induce colorectal adenocarcinoma cell line cytolysis is not yet known. In this study, we evaluated α-gal expression's ability to sensitize human colorectal adenocarcinoma cell lines to complement attack in cell lines LoVo, SW620, and Ls-174T. Nearly all α-gal-expressing LoVo and SW620 cells were killed by normal human serum (NHS), but α-gal-expressing Ls-174T cells showed no significant lysis. We analyzed the expression levels of membrane-bound complement regulatory proteins (mCRPs) on the three cell lines, and their protective role in α-gal-mediated activation of the complement. LoVo showed no expression of any of the three proteins. CD59 was strongly expressed by SW620 and Ls-174T. CD46 and CD55 varied between the two cell lines. CD46 on SW620 was only half the intensity of CD46 on Ls-174T. Ls-174T showed a notable expression of CD55, while expression of CD55 on SW620 was not detected. The sensitivity of Ls-174T expressing α-gal to NHS greatly increased following the downregulation of CD46 and CD55 with short hairpin RNA (shRNA). However, there is no increase in cell killing when CD59 expression was diminished. Our findings suggest that the use of α-gal as antigen to induce tumor cell killing may be a potential therapeutic strategy in colon cancer and that CD55 plays a primary role in conferring resistance to lysis.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3