Shear stress induces hepatocytePAI-1gene expression through cooperative Sp1/Ets-1 activation of transcription

Author:

Nakatsuka Hideki,Sokabe Takaaki,Yamamoto Kimiko,Sato Yoshinobu,Hatakeyama Katsuyoshi,Kamiya Akira,Ando Joji

Abstract

Partial hepatectomy causes hemodynamic changes that increase portal blood flow in the remaining lobe, where the expression of immediate-early genes, including plasminogen activator inhibitor-1 (PAI-1), is induced. We hypothesized that a hyperdynamic circulatory state occurring in the remaining lobe induces immediate-early gene expression. In this study, we investigated whether the mechanical force generated by flowing blood, shear stress, induces PAI-1 expression in hepatocytes. When cultured rat hepatocytes were exposed to flow, PAI-1 mRNA levels began to increase within 3 h, peaked at levels significantly higher than the static control levels, and then gradually decreased. The flow-induced PAI-1 expression was shear stress dependent rather than shear rate dependent and accompanied by increased hepatocyte production of PAI-1 protein. Shear stress increased PAI-1 transcription but did not affect PAI-1 mRNA stability. Functional analysis of the 2.1-kb PAI-1 5′-promoter indicated that a 278-bp segment containing transcription factor Sp1 and Ets-1 consensus sequences was critical to the shear stress-dependent increase of PAI-1 transcription. Mutations of both the Sp1 and Ets-1 consensus sequences, but not of either one alone, markedly prevented basal PAI-1 transcription and abolished the response of the PAI-1 promoter to shear stress. EMSA and chromatin immunoprecipitation assays showed binding of Sp1 and Ets-1 to each consensus sequence under static conditions, which increased in response to shear stress. In conclusion, hepatocyte PAI-1 expression is flow sensitive and transcriptionally regulated by shear stress via cooperative interactions between Sp1 and Ets-1.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3