Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation

Author:

Cheng Kunrong,Samimi Roxana,Xie Guofeng,Shant Jasleen,Drachenberg Cinthia,Wade Mark,Davis Richard J.,Nomikos George,Raufman Jean-Pierre

Abstract

Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist ( p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by ∼40% ( P < 0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively ( P < 0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes ( n = 25) whereas half of colon cancer specimens ( n = 24) exhibited moderate to strong staining ( P < 0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3