Affiliation:
1. Biopharmacy, Department of Pharmaceutical Sciences, University Basel, 4056 Basel, Switzerland
Abstract
Organic anion transporting polypeptide (OATP) 1B3–1B7 (LST-3TM12) is a member of the OATP1B [solute carrier organic anion transporter ( SLCO) 1B] family. This transporter is not only functional but also expressed in the membrane of the smooth endoplasmic reticulum of hepatocytes and enterocytes. OATP1B3–1B7 is a splice variant of SLCO1B3 in which the initial part is encoded by SLCO1B3, whereas the rest of the mRNA originates from the gene locus of SLCO1B7. In this study, we not only showed that SLCO1B3 and the mRNA encoding for OATP1B3–1B7 share the 5′ untranslated region but also that silencing of an initial SLCO1B3 exon lowered the amount of SLCO1B3 and of SLCO1B7 mRNA in Huh-7 cells. To validate the assumption that both transcripts are regulated by the same promoter we tested the influence of the bile acid sensor farnesoid X receptor (FXR) on their transcription. Treatment of Huh-7 and HepaRG cells with activators of this known regulator of OATP1B3 not only increased SLCO1B3 but also OATP1B3–1B7 mRNA transcription. Applying a heterologous expression system, we showed that several bile acids interact with OATP1B3–1B7 and that taurocholic acid and lithocholic acid are OATP1B3–1B7 substrates. As OATP1B3–1B7 is located in the smooth endoplasmic reticulum, it may grant access to metabolizing enzymes. In accordance are our findings showing that the OATP1B3–1B7 inhibitor bromsulphthalein significantly reduced uptake of bile acids into human liver microsomes. Taken together, we report that OATP1B3–1B7 transcription can be modulated with FXR agonists and antagonists and that OATP1B3–1B7 transports bile acids. NEW & NOTEWORTHY Our study on the transcriptional regulation of the novel organic anion transporting polypeptide (OATP) 1B3–1B7 concludes that the promoter of solute carrier organic anion transporter ( SLCO) 1B3 governs SLCO1B3–1B7 transcription. Moreover, the transcription of OATP1B3–1B7 can be modulated by farnesoid X receptor (FXR) agonists and antagonists. FXR is a major regulator in bile acid homeostasis that links OATP1B3–1B7 to this physiological function. Findings in transport studies with OATP1B3–1B7 suggest that this transporter interacts with the herein tested bile acids.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献