Mechanism of augmented duodenal HCO3−secretion after elevation of luminal CO2

Author:

Furukawa Osamu,Hirokawa Masahiko,Zhang Lening,Takeuchi Tetsu,Bi Luke C.,Guth Paul H.,Engel Eli,Akiba Yasutada,Kaunitz Jonathan D.

Abstract

The proximal duodenum is exposed to extreme elevations of Pco2because of the continuous mixture of secreted HCO3with gastric acid. These elevations (up to 80 kPa) are likely to place the mucosal cells under severe acid stress. Furthermore, we hypothesized that, unlike most other cells, the principal source of CO2for duodenal epithelial cells is from the lumen. We hence examined the effect of elevated luminal Pco2on duodenal HCO3secretion (DBS) in the rat. DBS was measured by the pH-stat method. For CO2challenge, the duodenum was superfused with a high Pco2solution. Intracellular pH (pHi) of duodenal epithelial cells was measured by ratio microfluorometry. CO2challenge, but not isohydric solutions, strongly increased DBS to approximately two times basal for up to 1 h. Preperfusion of the membrane-permeant carbonic anhydrase inhibitor methazolamide, or continuous exposure with indomethacin, fully inhibited CO2-augmented DBS. Dimethyl amiloride (0.1 mM), an inhibitor of the basolateral sodium-hydrogen exchanger 1, also inhibited CO2-augumented DBS, although S-3226, a specific inhibitor of apical sodium-hydrogen exchanger 3, did not. DIDS, an inhibitor of basolateral sodium-HCO3cotransporter, also inhibited CO2-augemented DBS, as did the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid. CO2decreased epithelial cell pHi, followed by an overshoot after removal of the CO2solution. We conclude that luminal CO2diffused in the duodenal epithelial cells and was converted to H+and HCO3by carbonic anhydrase. H+initially exited the cell, followed by secretion of HCO3. Secretion was dependent on a functioning basolateral sodium/proton exchanger, a functioning basolateral HCO3uptake mechanism, and submucosal prostaglandin generation and facilitated hydration of CO2into HCO3and H+.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3