Role of microtubules in estradiol-17β-d-glucuronide-induced alteration of canalicular Mrp2 localization and activity

Author:

Mottino Aldo D.,Crocenzi Fernando A.,Pozzi Enrique J. Sánchez,Veggi Luis M.,Roma Marcelo G.,Vore Mary

Abstract

Estradiol-17β-d-glucuronide (E2-17G) induces a marked but reversible inhibition of bile flow in the rat together with endocytic retrieval of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane to intracellular structures. We analyzed the effect of pretreatment (100 min) with the microtubule inhibitor colchicine or lumicholchicine, its inactive isomer (1 μmol/kg iv), on changes in bile flow and localization and function of Mrp2 induced by E2-17G (15 μmol/kg iv). Bile flow and biliary excretion of bilirubin, an endogenous Mrp2 substrate, were measured throughout, whereas Mrp2 localization was examined at 20 and 120 min after E2-17G by confocal immunofluorescence microscopy and Western analysis. Colchicine pretreatment alone did not affect bile flow or Mrp2 localization and activity over the short time scale examined (3–4 h). Administration of E2-17G to colchicine-pretreated rats induced a marked decrease (85%) in bile flow and biliary excretion of bilirubin as well as internalization of Mrp2 at 20 min. These alterations were of a similar magnitude as in rats pretreated with lumicolchicine followed by E2-17G. Bile flow and Mrp2 localization and activity were restored to control levels within 120 min of E2-17G in animals pretreated with lumicolchicine. In contrast, in colchicine-pretreated rats followed by E2-17G, bile flow and Mrp2 activity remained significantly inhibited by 60%, and confocal and Western studies revealed sustained internalization of Mrp2 120 min after E2-17G. We conclude that recovery from E2-17G cholestasis, associated with exocytic insertion of Mrp2 in the canalicular membrane, but not its initial E2-17G-induced endocytosis, is a microtubule-dependent process.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3