Mechanism of active repolarization of inhibitory junction potential in murine colon

Author:

Baker Salah A.1,Mutafova-Yambolieva Violeta1,Monaghan Kevin1,Horowitz Burton1,Sanders Kenton M.1,Koh Sang Don1

Affiliation:

1. Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557

Abstract

Enteric inhibitory responses in gastrointestinal (GI) smooth muscles involve membrane hyperpolarization that transiently reduce the excitability of GI muscles. We examined the possibility that an active repolarization mechanism participates in the restoration of resting membrane potential after fast inhibitory junction potentials (IJPs) in the murine colon. Previously, we showed these cells express a voltage-dependent nonselective cation conductance (NSCC) that might participate in active repolarization of IJPs. Colonic smooth muscle cells were impaled with micro-electrodes and voltage responses to nerve-evoked IJPs, and locally applied ATP were recorded. Ba2+ (500 μM), a blocker of the NSCC, slowed the rate of repolarization of IJPs. We also tested the effects of Ba2+, Ni2+, and mibefradil, all blockers of the NSCC, on responses to locally applied ATP. Spritzes of ATP caused transient hyperpolarization, and the durations of these responses were significantly increased by the blockers of the NSCC. We considered whether NSCC blockers might affect ATP metabolism and found that Ni2+ decreased ATP breakdown in colonic muscles. Mibefradil had no effect on ATP metabolism. Because both Ni2+ and mibefradil had similar effects on prolonging responses to ATP, it appears that restoration of resting membrane potential after ATP spritzes is not primarily due to ATP metabolism. Neurally released enteric inhibitory transmitter and locally applied ATP resulted in transient hyperpolarizations of murine colonic muscles. Recovery of membrane potential after these responses appears to involve an active repolarization mechanism due to activation of the voltage-dependent NSCC expressed by these cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference35 articles.

1. Bauer V. NANC transmission in intestines and its pharmacological modulation. Acta Neurobiol Exp (Warsz) 53: 65-77, 1993.

2. The nature of non-cholinergic, non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum

3. Bauer V and Matusak O. The non-adrenergic non-cholinergic innervation and transmission in the small intestine. Arch Int Pharmacodyn Ther 280: 137-163, 1986.

4. Role of nitric oxide as an inhibitory neurotransmitter in the canine pyloric sphincter

5. Patterns of electrical activity and neural responses in canine proximal duodenum

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3