Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis

Author:

Tan Terrence C. H.123,Crawford Darrell H. G.12,Jaskowski Lesley A.12,Murphy Therese M.12,Heritage Mandy L.12,Subramaniam V. Nathan124,Clouston Andrew D.1,Anderson Gregory J.4,Fletcher Linda M.123

Affiliation:

1. School of Medicine, University of Queensland,

2. Gallipoli Medical Research Centre, Greenslopes Hospital,

3. Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, and

4. The Queensland Institute of Medical Research, Brisbane, Queensland, Australia

Abstract

The HFE protein plays a crucial role in the control of cellular iron homeostasis. Steatosis is commonly observed in HFE-related iron-overload disorders, and current evidence suggests a causal link between iron and steatosis. Here, we investigated the potential contribution of HFE mutations to hepatic lipid metabolism and its role in the pathogenesis of nonalcoholic fatty liver disease. Wild-type (WT) and Hfe knockout mice ( Hfe−/−) were fed either standard chow, a monounsaturated low fat, or a high-fat, high-carbohydrate diet (HFD) and assessed for liver injury, body iron status, and markers of lipid metabolism. Despite hepatic iron concentrations and body weights similar to WT controls, Hfe −/− mice fed the HFD developed severe hypoxia-related steatohepatitis, Tnf-α activation, and mitochondrial respiratory complex and antioxidant dysfunction with early fibrogenesis. These features were associated with an upregulation in the expression of genes involved in intracellular lipid synthesis and trafficking, while transcripts for mitochondrial fatty acid β-oxidation and adiponectin signaling-related genes were significantly attenuated. In contrast, HFD-fed WT mice developed bland steatosis only, with no inflammation or fibrosis and no upregulation of lipogenesis-related genes. A HFD led to reduced hepatic iron in Hfe −/− mice compared with chow-fed mice, despite higher serum iron, decreased hepcidin expression, and increased duodenal ferroportin mRNA . In conclusion, our results demonstrate that Hfe −/− mice show defective hepatic-intestinal iron and lipid signaling, which predispose them toward diet-induced hepatic lipotoxicity, accompanied by an accelerated progression of injury to fibrosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3