Colonic soluble mediators from the maternal separation model of irritable bowel syndrome activate submucosal neurons via an interleukin-6-dependent mechanism

Author:

O'Malley Dervla1,Liston Martin1,Hyland Niall P.12,Dinan Timothy G.13,Cryan John F.124

Affiliation:

1. Alimentary Pharmabiotic Centre,

2. Department of Pharmacology and Therapeutics,

3. Department of Psychiatry, and

4. School of Pharmacy, University College Cork, Cork, Ireland

Abstract

Irritable bowel syndrome (IBS) is characterized by episodic bouts of abdominal pain, bloating, and altered bowel habit. Accumulating evidence has linked immune activation with IBS, including reports of increases in circulating levels of the proinflammatory cytokine interleukin (IL)-6. However, it is unknown whether IL-6 contributes directly to disease manifestation. As enteric nervous activity mediates motility and secretory function, the aims of this study were to determine the effects of IL-6 on submucosal neurons and related gastrointestinal (GI) function. In these studies, we examined the colons of maternally separated (MS) rats, which exhibit elevated circulating levels of IL-6 in addition to GI dysfunction. To our knowledge, these studies are the first to provide evidence of the sensitivity of submucosal neurons to colonic secretions from MS rats ( n = 50, P < 0.05), thus recapitulating clinical biopsy data. Moreover, we demonstrated that the excitatory action is IL-6 dependent. Thereafter, the impact of IL-6 on neuronal and glial activation and absorpto/secretory function was pharmacologically characterized. Other proinflammatory cytokines including IL-8 ( n = 30, P > 0.05), IL-1β ( n = 56, P > 0.05), and TNF-α ( n = 56, P > 0.05) excited fewer neurons. Both muscarinic and nicotinic cholinergic receptors participate in the effect and cause downstream activation of ERK, JAK-STAT, and NF-κB signaling cascades. Functionally, IL-6 increases transepithelial resistance and enhances neurally and cholinergically mediated ion transport. These data provide a role for IL-6 in colonic secretory functions and relate these effects to GI dysfunction in an animal model of IBS, thereby elucidating a potential relationship between circulating levels of IL-6 and aberrant GI function.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3