Chimeric SOD2/3 inhibits at the endothelial-neutrophil interface to limit vascular dysfunction in ischemia-reperfusion

Author:

Bonder Claudine S.,Knight Derrice,Hernandez-Saavedra Daniel,McCord Joe M.,Kubes Paul

Abstract

After an ischemic episode, reperfusion causes profound oxidative stress in the vasculature of the afflicted tissue/organ. The dysregulated accumulation of reactive oxygen species (ROS), such as superoxide, has been closely linked to the production and release of proinflammatory mediators, a profound increase in adhesion molecule expression by the vascular endothelium, and infiltration of neutrophils during ischemia-reperfusion (I/R). Superoxide dismutase (SOD) has been shown to protect tissues and organs against I/R-induced injury; however, the drug had to be continuously perfused or kidneys had to be occluded to prevent clearance. We used intravital microscopy, a system that allowed us to visualize neutrophil-endothelial interactions within the mesenteric postcapillary venules of cats subjected to I/R and tested the hypothesis that I/R-induced neutrophil recruitment was inhibited by treatment with SOD2/3. SOD2/3 is a chimeric fusion gene product that contains the mature SOD2 as well as the COOH-terminal “tail” of SOD3 and, unlike the three naturally occurring SODs (SOD1, SOD2, and SOD3), which bear a net negative charge at pH 7.4, SOD2/3 is positively charged and physiologically stable. Our results suggest that not only does SOD2/3 have a much greater efficacy in vivo than the native human SOD2, but its administration prevents I/R-induced neutrophil-endothelial cell interactions and microvascular dysfunction. Moreover, our data support the hypothesis that reactive oxidants mediate I/R-induced injury and that the chimeric recombinant SOD2/3 has the potential to be a therapeutic agent against this debilitating illness.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3