Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs

Author:

Esfandiari Farah,Villanueva Jesus A.,Wong Donna H.,French Samuel W.,Halsted Charles H.

Abstract

Previously, we showed that feeding micropigs ethanol with a folate-deficient diet promoted the development of hepatic injury while increasing hepatic levels of homocysteine and S-adenosylhomocysteine (SAH) and reducing the level of S-adenosylmethionine (SAM) and the SAM-to-SAH ratio. Our present goals were to evaluate mechanisms for hepatic injury using liver specimens from the same micropigs. The effects of ethanol feeding or folate-deficient diets, singly or in combination, on cytochrome P-450 2E1 (CYP2E1) and signal pathways for apoptosis and steatosis were analyzed using microarray, real-time PCR, and immunoblotting techniques. Apoptosis was increased maximally by the combination of ethanol feeding and folate deficiency and was correlated positively to liver homocysteine and SAH. Liver CYP2E1 and the endoplasmic reticulum stress signals glucose-regulated protein 78 (GRP78), caspase 12, and sterol regulatory element binding protein-1c (SREBP-1c) were each activated in pigs fed folate-deficient or ethanol diets singly or in combination. Liver mRNA levels of CYP2E1, GRP78, and SREBP-1c, and protein levels of CYP2E1, GRP78, nuclear SREBP, and activated caspase 12 each correlated positively to liver levels of SAH and/or homocysteine and negatively to the SAM-to-SAH ratio. The transcripts of the lipogenic enzymes fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase were elevated in the ethanol-fed groups, and each was positively correlated to liver homocysteine levels. The induction of abnormal hepatic methionine metabolism through the combination of ethanol feeding with folate deficiency is associated with the activation of CYP2E1 and enhances endoplasmic reticulum stress signals that promote steatosis and apoptosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3